There has been a lot of interest in microstrip diplexers lately due to their potential use in numerous wireless and computer communication technologies, including radio broadcasts, mobile phones, broadband wireless, and satellite-based communication systems. It can do this because it has a communication channel that can combine two distinct filters into one. This article presents a narrow-band microstrip diplexer that uses a stepped impedance resonator, a uniform impedance resonator, tiny square patches, and a meander line resonator. The projected diplexer might be made smaller than its initial dimensions by utilizing the winding construction. To model the microstrip diplexer topology for WiMAX and WIFI/WLAN at 1.66 GHz and 2.52 GHz, the Advanced Wave Research (AWR) solver was employed. It exhibited an insertion loss of 3.2 dB and a return loss of 16 dB for the first channel, while the insertion loss and return loss were 2.88 dB and 21 dB, respectively, for the second channel. When both filters were simulated, the band isolation was 31 dB. The projected microstrip diplexer has been fabricated using an FR4 epoxy laminate with dimensions of 32 × 26 mm2. The simulated S-parameters phase and group delay closely matched the measurements.