Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Scalar-Induced Gravitational Waves (SIGWs) represent a particular class of primordial signals which are sourced at second-order in perturbation theory whenever a scalar fluctuation of the metric is present. They form a guaranteed Stochastic Gravitational Wave Background (SGWB) that, depending on the amplification of primordial scalar fluctuations, can be detected by GW detectors. The amplitude and the frequency shape of the scalar-induced SGWB can be influenced by the statistical properties of the scalar density perturbations. In this work we study the intuitive physics behind SIGWs and we analyze the imprints of local non-Gaussianity of the primordial curvature perturbation on the GW spectrum. We consider all the relevant non-Gaussian contributions up to fifth-order in the scalar seeds without any hierarchy, and we derive the related GW energy density ΩGW(f). We perform a Fisher matrix analysis to understand to which accuracy non-Gaussianity can be constrained with the LISA detector, which will be sensitive in the milli-Hertz frequency band. We find that LISA, neglecting the impact of astrophysical foregrounds, will be able to measure the amplitude, the width and the peak of the spectrum with an accuracy up to 𝒪(10-4), while non-Gaussianity can be measured up to 𝒪(10-3). Finally, we discuss the implications of our non-Gaussianity expansion on the fraction of Primordial Black Holes.
Scalar-Induced Gravitational Waves (SIGWs) represent a particular class of primordial signals which are sourced at second-order in perturbation theory whenever a scalar fluctuation of the metric is present. They form a guaranteed Stochastic Gravitational Wave Background (SGWB) that, depending on the amplification of primordial scalar fluctuations, can be detected by GW detectors. The amplitude and the frequency shape of the scalar-induced SGWB can be influenced by the statistical properties of the scalar density perturbations. In this work we study the intuitive physics behind SIGWs and we analyze the imprints of local non-Gaussianity of the primordial curvature perturbation on the GW spectrum. We consider all the relevant non-Gaussian contributions up to fifth-order in the scalar seeds without any hierarchy, and we derive the related GW energy density ΩGW(f). We perform a Fisher matrix analysis to understand to which accuracy non-Gaussianity can be constrained with the LISA detector, which will be sensitive in the milli-Hertz frequency band. We find that LISA, neglecting the impact of astrophysical foregrounds, will be able to measure the amplitude, the width and the peak of the spectrum with an accuracy up to 𝒪(10-4), while non-Gaussianity can be measured up to 𝒪(10-3). Finally, we discuss the implications of our non-Gaussianity expansion on the fraction of Primordial Black Holes.
Studying the primordial non-Gaussianity of inflationary perturbations is crucial for testing the inflation paradigm of the early universe. In this work, we conduct a comprehensive analysis of the angular bispectrum and trispectrum of scalar-induced gravitational waves (SIGWs) in the presence of local-type primordial non-Gaussianity parameterized by f NL and g NL, deriving their semi-analytical formulae for the first time. Our findings indicate that it is the presence of primordial non-Gaussianity that leads to a non-Gaussian SIGW background, suggesting that the angular bispectrum and trispectrum of SIGWs could serve as probes of the primordial non-Gaussianity. Our numerical results further illustrate that f NL and g NL exert significant impacts on the spectral amplitudes, potentially reaching up to 10-5 for the former and 10-8 for the latter. In particular, we demonstrate that the angular bispectrum and trispectrum exhibit characteristic dependence on the angular multipoles and frequency bands. They hold potentials to be measured by gravitational-wave detectors that may advance our understanding of the origin of the universe.
In recent years, the detection of gravitational waves by LIGO and PTA collaborations have raised the intriguing possibility of excess matter power at small scales. Such an increase can be achieved by ultra slow roll (USR) phase during inflationary epoch. We constrain excess power over small scales within the framework of such models using cosmological datasets, particularly of CMB anisotropies and Lyman-α. We parameterize the USR phase in terms of the e-fold at the onset of USR (counted from the end of inflation) N̅1 and the duration of USR phase Δ N. The former dictates the scale of enhancement in the primordial power spectrum, while the latter determines the amplitude of such an enhancement. From a joint dataset of CMB and galaxy surveys, we obtain N̅1 ≲ 45 with no bound on Δ N. This in turn implies that the scales over which the power spectrum can deviate significantly from the nearly scale invariant behavior of a typical slow-roll model is k ≳1 Mpc-1. On the other hand, the Lyman-α data is sensitive to baryonic power spectrum along the line of sight. We consider a semi-analytic theoretical method and high spectral-resolution Lyman-α data to constrain the model. The Lyman-α data limits both the USR parameters: N̅1 ≲ 41 and Δ N ≲ 0.4. This constrains the amplitude of the power spectrum enhancement to be less than a factor of hundred over scales 1 ≲ k/ Mpc-1≲ 100, thereby considerably improving the constraint on power over these scales as compared to the bounds arrived at from CMB spectral distortion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.