A blockchain has been applied in many areas, such as cryptocurrency, smart cities and digital finance. The consensus protocol is the core part of the blockchain network, which addresses the problem of transaction consistency among the involved participants. However, the scalability, efficiency and security of the consensus protocol are greatly restricted with the increasing number of nodes. A Hierarchy Byzantine Fault Tolerance consensus protocol (HBFT) based on node reputation has been proposed. The two-layer hierarchy structure is designed to improve the scalability by assigning nodes to different layers. Each node only needs to exchange messages within its group, which deducts the communication complexity between nodes. Specifically, a reputation model is proposed to distinguish normal nodes from malicious ones by a punish and reward mechanism. It is applied to ensure that the malicious node merely existing in the bottom layer and the communication complexity in the high layer can be further lowered. Finally, a random selection mechanism is applied in the selection of the leader node. The mechanism can ensure the security of the blockchain network with the characteristics of unpredictability and randomicity. Some experimental results demonstrated that the proposed consensus protocol has excellent performance in comparison to some state-of-the-art models.