Objective/Scope: Integrated asset modeling (IAM) offers the oil industry several benefits. The next-generation reservoir simulators help achieve faster runtimes, insight into interaction between various components of a development, and can be used as an effective tool in detecting bottlenecks in a production system as well as a constant and more effective communication tool between various departments. IAM provides significant opportunities for optimization of very large or complex infrastructures and life-offield analysis of production optimization scenarios.Simultaneous modeling of surface and subsurface components helps reduce time and enhances efficiency during the decision-making process which eliminates the requirement for tedious, time-consuming work and iterations between separate solutions of reservoir and surface networks. Beyond this convenience, this technology makes it possible to reach more robust results more quickly using surface-subsurface coupling. The objective of this study is to outline the advantages and the challenges in using next-generation simulators on simulation of multiple reservoirs in integrated asset management.Methods/Processes: Simultaneous simulation of multiple reservoirs adds another dimension of complexity to the process of integrated asset modeling. Several sub-reservoir models can be simulated simultaneously in large fields comprising sub-reservoirs with complex surface systems, which could otherwise become very tedious to handle. In this study, a next-generation reservoir simulator is coupled with an optimization and uncertainty tool that is used to optimize the net present value of the entire asset. Several constraints and bottlenecks in such a large system exist, all connected to one another. IAM proves useful in debottlenecking to increase efficiency of the thorough system. The strengths and difficulties associated with simultaneous simulation and optimization of multiple reservoirs are compared to the more conventional way of simulating the assets separately, thus illustrating the benefits of using next-generation reservoir simulators during optimization of multiple reservoirs.
Results/Observations:The results show that simultaneous solution of the surface-subsurface coupling gives significantly faster results than that of a system that consists of separate solution of surface and subsurface. The speed difference becomes more significant when the number of reservoirs simulated is more than one. This study outlines the workflow in setting up the model, the CPU time for each component of the simulation, the explanation of each important item in this process to illustrate the