2022
DOI: 10.1109/jiot.2022.3189220
|View full text |Cite
|
Sign up to set email alerts
|

New Results for Pearson Type III Family of Distributions and Application in Wireless Power Transfer

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 33 publications
0
3
0
Order By: Relevance
“…Suppose we use the Pearson type III distribution P=PIIIprefixfalse(μtrue,σ2true,ρpostfixfalse) $P={\mathcal{P}}_{\text{III}}(\mu ,{\sigma }^{2},\rho )$ for log‐transformed annual maxima discharges. If we reparameterize the location μ , shape ρ and scale σ 2 of PIIIprefixfalse(μtrue,σ2true,ρpostfixfalse) ${\mathcal{P}}_{\text{III}}(\mu ,{\sigma }^{2},\rho )$ to ξ = μ − 2 σ / ρ , a = 4/ ρ 2 and b=12σfalse|ρfalse| $b=\frac{1}{2}\sigma \vert \rho \vert $, respectively, then the PDF of P simplifies to (Hosking & Wallis, 1997; Tegos et al., 2022) fPprefixfalse(xtrue,ξtrue,atrue,bpostfixfalse)=false|xξ|a1banormalΓprefixfalse(apostfixfalse)expprefixfalse(b1false|xξfalse|postfixfalse)true, ${f}_{P}(x,\xi ,a,b)=\frac{\vert x-\xi {\vert }^{a-1}}{{b}^{a}{\Gamma }(a)}\mathrm{exp}(-{b}^{-1}\vert x-\xi \vert ),$ where x,ξ,a,bdouble-struckR $x,\xi ,a,b\in \mathbb{R}$, a > 0 and b > 0. If ρ > 0 then x ∈ ( ξ , ∞ ), otherwise for ρ < 0 we yield x ∈ (− ∞ , ξ ).…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…Suppose we use the Pearson type III distribution P=PIIIprefixfalse(μtrue,σ2true,ρpostfixfalse) $P={\mathcal{P}}_{\text{III}}(\mu ,{\sigma }^{2},\rho )$ for log‐transformed annual maxima discharges. If we reparameterize the location μ , shape ρ and scale σ 2 of PIIIprefixfalse(μtrue,σ2true,ρpostfixfalse) ${\mathcal{P}}_{\text{III}}(\mu ,{\sigma }^{2},\rho )$ to ξ = μ − 2 σ / ρ , a = 4/ ρ 2 and b=12σfalse|ρfalse| $b=\frac{1}{2}\sigma \vert \rho \vert $, respectively, then the PDF of P simplifies to (Hosking & Wallis, 1997; Tegos et al., 2022) fPprefixfalse(xtrue,ξtrue,atrue,bpostfixfalse)=false|xξ|a1banormalΓprefixfalse(apostfixfalse)expprefixfalse(b1false|xξfalse|postfixfalse)true, ${f}_{P}(x,\xi ,a,b)=\frac{\vert x-\xi {\vert }^{a-1}}{{b}^{a}{\Gamma }(a)}\mathrm{exp}(-{b}^{-1}\vert x-\xi \vert ),$ where x,ξ,a,bdouble-struckR $x,\xi ,a,b\in \mathbb{R}$, a > 0 and b > 0. If ρ > 0 then x ∈ ( ξ , ∞ ), otherwise for ρ < 0 we yield x ∈ (− ∞ , ξ ).…”
Section: Discussionmentioning
confidence: 99%
“…Suppose that the distribution forecast P follows a univariate Pearson type III distribution P III (μ,σ 2 ,ρ) with mean μ, variance σ 2 and skewness ρ. If we reparametrize the PIII distribution and define ξ = μ − 2σ/ρ, a = 4/ρ 2 and b = 1 2 σ|ρ| as location, shape and scale parameters, respectively, then the CDF of P = P III (ξ, a, b) simplifies to (Tegos et al, 2022) Water Resources Research…”
Section: Appendix I: Analytic Expressions For Continuous Ranked Proba...mentioning
confidence: 99%
See 1 more Smart Citation