2018
DOI: 10.3788/lop55.011901
|View full text |Cite
|
Sign up to set email alerts
|

New Soliton Solutions and Soliton Evolvements for(2+1)-Dimensional Dispersive Long Wave Equation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
2
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 0 publications
0
2
0
Order By: Relevance
“…which has some special cases in hydrodynamics (Boiti et al, 1987;Tian and Gao, 1996;Gramolin, 2008, 2009;Wen, 2009;Sun et al, 2010;Hu et al, 2016;Xia et al, 2017;Yang and Feng, 2018), with d = 0, b and a = 0 standing for three real constants, the horizontal velocity, u(x, y, t), and the wave height above the undisturbed water surface, v(x, y, t), being two real differentiable functions with respect to the variables t, x and y, (x, y) representing the propagation plane while t implying the time. For system (1), certain similarity reductions (Gao et al, 2022b(Gao et al, , 2023a(Gao et al, , 2021b, hetero-Bäcklund transformations (Gao et al, 2023a(Gao et al, , 2021c(Gao et al, , 2020, bilinear forms (Gao et al, 2022b(Gao et al, , 2021c, scaling transformations (Gao et al, 2021c), solitons (Gao et al, 2021c(Gao et al, , 2020 and auto-Bäcklund transformations (Gao et al, 2020) have been reported.…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…which has some special cases in hydrodynamics (Boiti et al, 1987;Tian and Gao, 1996;Gramolin, 2008, 2009;Wen, 2009;Sun et al, 2010;Hu et al, 2016;Xia et al, 2017;Yang and Feng, 2018), with d = 0, b and a = 0 standing for three real constants, the horizontal velocity, u(x, y, t), and the wave height above the undisturbed water surface, v(x, y, t), being two real differentiable functions with respect to the variables t, x and y, (x, y) representing the propagation plane while t implying the time. For system (1), certain similarity reductions (Gao et al, 2022b(Gao et al, , 2023a(Gao et al, , 2021b, hetero-Bäcklund transformations (Gao et al, 2023a(Gao et al, , 2021c(Gao et al, , 2020, bilinear forms (Gao et al, 2022b(Gao et al, , 2021c, scaling transformations (Gao et al, 2021c), solitons (Gao et al, 2021c(Gao et al, , 2020 and auto-Bäcklund transformations (Gao et al, 2020) have been reported.…”
mentioning
confidence: 99%
“…Getting enthusiastic from Liu (2023), Khuri (2023) and Li et al (2022), this Letter designs to symbolically compute a (2+1)-dimensional generalized dispersive long-wave system modeling certain dispersive and nonlinear long gravity waves in two directions, horizontally, on the shallow water of an ocean (Gao et al , 2022b, 2023a, 2021b, 2021c, 2020), i.e. : which has some special cases in hydrodynamics (Boiti et al ., 1987; Tian and Gao, 1996; Dubrovsky and Gramolin, 2008, 2009; Wen, 2009; Sun et al ., 2010; Hu et al ., 2016; Xia et al ., 2017; Yang and Feng, 2018), with δ ≠ 0, β and α ≠ 0 standing for three real constants, the horizontal velocity, u ( x , y , t ), and the wave height above the undisturbed water surface, v ( x , y , t ), being two real differentiable functions with respect to the variables t , x and y , ( x , y ) representing the propagation plane while t implying the time. For system (1), certain similarity reductions (Gao et al , 2022b, 2023a, 2021b), hetero-Bäcklund transformations (Gao et al , 2023a, 2021c, 2020), bilinear forms (Gao et al , 2022b, 2021c), scaling transformations (Gao et al , 2021c), solitons (Gao et al , 2021c, 2020) and auto-Bäcklund transformations (Gao et al , 2020) have been reported.…”
mentioning
confidence: 99%