This paper shows the applicability of the First Integral Method in obtaining solutions of Nonlinear Partial Differential Equations (NLPDEs). The method is applied in constructing solutions of Kudryashov-Sinelshchikov equation (KSE) and Generalized Radhakrishnan-Kundu-Lakshmanan Equation (GRKLE). The First Integral Method, which is based on the Ring Theory of Commutative Algebra, is a direct algebraic method for obtaining exact solutions of NLPDEs. This method is applicable to integrable as well as nonintegrable NLPDEs. The method is an efficient method for obtaining exact solutions of many Nonlinear Evolution Equations (NLEEs).