Structural Genomics aims to elucidate protein structures to identify their functions. Unfortunately, the variation of just a few residues can be enough to alter activity or binding specificity and limit the functional resolution of annotations based on sequence and structure; in enzymes, substrates are especially difficult to predict. Here, large-scale controls and direct experiments show that the local similarity of five or six residues selected because they are evolutionarily important and on the protein surface can suffice to identify an enzyme activity and substrate. A motif of five residues predicted that a previously uncharacterized Silicibacter sp. protein was a carboxylesterase for short fatty acyl chains, similar to hormone-sensitive-lipase-like proteins that share less than 20% sequence identity. Assays and directed mutations confirmed this activity and showed that the motif was essential for catalysis and substrate specificity. We conclude that evolutionary and structural information may be combined on a Structural Genomics scale to create motifs of mixed catalytic and noncatalytic residues that identify enzyme activity and substrate specificity. A s the list of known genes grows exponentially, the elucidation of their function remains a major bottleneck and lags far behind the production of sequences (1-5). The best approach remains to search computationally for functionally characterized sequence homologs, ideally with greater than 50% sequence identity (6). Binding specificity, however, is sensitive to subtle amino acid differences, and the transfer of substrate between related enzymes is prone to errors when sequence identity is below 65-80% (7-9). These thresholds vary from case to case: Some orthologs will maintain identical functions down to 25% sequence identify (9), whereas paralogs can take on highly diverse activities (10). Other difficulties that plague annotation transfer between homologs are that individual small molecules may each bind to multiple and distinct molecular pockets (11), that different residues can support similar chemistries (12), and that activity can vary even when catalytic residues are conserved (13-18). To raise annotation accuracy, Structural Genomics (19) made structural information widely available and spurred the development of annotation methods dependent on local chemical and physical environments (20), sequence and structural comparisons (21), or 3D templates (22). In the case of the latter, these methods search between proteins for local structural similarities over a few signature residues that represent the telltale parts of a functional site, so-called "3D templates" (3,14,18,(22)(23)(24). The residue composition of 3D templates is critical, however, and derived from experiments (25) or from analyses of functional sites and determinants (14,15,26). The sensitivity and specificity of template-based annotations still needs to be established experimentally (27, 28), but retrospective controls suggest they often predict enzyme catalytic activity (14,16,17,29,30...