The world population’s growing demand for food is expected to increase dramatically by 2050. The agronomic productivity for food is severely affected due to biotic and abiotic constraints. At a global level, insect pests alone account for ~20% loss in crop yield every year. Deployment of noxious chemical pesticides to control insect pests always has a threatening effect on human health and environmental sustainability. Consequently, this necessitates for the establishment of innovative, environmentally friendly, cost-effective, and alternative means to mitigate insect pest management strategies. According to a recent study, using chloroplasts engineered with double-strand RNA (dsRNA) is novel successful combinatorial strategy deployed to effectively control the most vexing pest, the western flower thrips (WFT: Frankliniella occidentalis). Such biotechnological avenues allowed us to recapitulate the recent progress of research methods, such as RNAi, CRISPR/Cas, mini chromosomes, and RNA-binding proteins with plastid engineering for a plausible approach to effectively mitigate agronomic insect pests. We further discussed the significance of the maternal inheritance of the chloroplast, which is the major advantage of chloroplast genome engineering.