Stimuli-responsive functional materials, especially the light stimulation color change and tunable fluorescent materials, have received considerable attention because of their broad applications in smart materials. Herein, a series of lanthanide-based [Ln = Nd(III) (1), Sm(III) (2), Eu(III) (3), Gd(III) (4), Tb(III) (5), Yb(III) (6), and Lu(III) (7)] crystalline complexes were attained by simply adding the aqueous lanthanide nitrate solution to the water-soluble naphthalenediimide derivative. The obtained lanthanide-based crystalline materials not only show significant photochromism but also possess reactive organic radicals under ambient conditions. Intriguingly, photoswitchable near-infrared (NIR) fluorescence was realized in the crystalline complex 1. The structures of these crystalline materials were systematically studied to clarify the weak interaction-assisted charge-transfer process. The underlying multiple-interactionassisted supramolecular self-assembly, the radical-doped nature, and the corresponding photochromic mechanism were thoroughly unearthed by single-crystal X-ray diffraction, in situ solid-state UV−vis diffuse reflectance, and electron paramagnetic resonance spectrometric analysis.