54 -dependent regulatory elements in front of the divergently transcribed cpnB and cpnC genes supports the notion that cpnR is a regulatory gene of the NtrC type. Knowledge of the nucleotide sequence of the cpn genes was used to construct isopropyl--thio-D-galactoside-inducible clones of Escherichia coli cells that overproduce the five enzymes of the cpn pathway. The substrate specificities of CpnA and CpnB were studied in particular to evaluate the potential of these enzymes and establish the latter recombinant strain as a bioreagent for Baeyer-Villiger oxidations. Although frequently nonenantioselective, cyclopentanone 1,2-monooxygenase was found to exhibit a broader substrate range than the related cyclohexanone 1,2-monooxygenase from Acinetobacter sp. strain NCIMB 9871. However, in a few cases opposite enantioselectivity was observed between the two biocatalysts.Pseudomonas sp. strain NCIMB 9872, which is capable of growth on 0.1% cyclopentanol as sole carbon source, was isolated from a freshwater stream in Illinois by P. J. Chapman some three decades ago. Trudgill and coworkers (27) used this strain as a prototype organism to establish the biochemical pathway of cyclopentanol metabolism shown in Fig. 1. For reason of utility as a Baeyer-Villiger (BV) biocatalyst and its mechanistic aspects (2,8,13,58,71), the second biochemical step catalyzed by cyclopentanone 1,2-monooxygenase (CPMO) has been most extensively studied in this organism. The conversion of cyclopentanone to 5-valerolactone is NADPH and flavin adenine dinucleotide (FAD) dependent, and CPMO has been purified to near homogeneity. It is a tetramer of subunit molecular weight 50,000 to 54,000 (8,66). Assay of the FAD/ protein ratio gave values of 2 to 4 molecules of FAD bound to each tetrameric enzyme molecule (28,66). An N-terminal 29-amino-acid sequence of CPMO has been determined (8).A chemical BV oxidation is the transformation of ketones into esters or of cyclic ketones into lactones by peracids, such as 3-chloroperbenzoic acid. This century-old reaction (for reviews, see references 54 and 63) continues to attract interest not only in broadening the spectrum of applications (ranging from the synthesis of steroids, antibiotics, and pheromones to the synthesis of monomers for polymerization, etc.) but also in developing oxidants that are more chemoselective and efficient and thus result in more product than waste (20).The biological BV reactions catalyzed by BV monooxygenases (BVMOs) offer the prospect of eco-efficient chemical transformations in whole cells or improved expression systems via cloning. Moreover, BVMOs can provide products in optically active form which are difficult to obtain by other strategies (for reviews, see references 55, 61, 71, and 74). Notable ste-* Corresponding author. Mailing address: