2023
DOI: 10.1108/dta-08-2022-0315
|View full text |Cite
|
Sign up to set email alerts
|

News recommendations based on collaborative topic modeling and collaborative filtering with generative adversarial networks

Abstract: PurposeOnline news websites provide huge amounts of timely news, bringing the challenge of recommending personalized news articles. Generative adversarial networks (GAN) based on collaborative filtering (CFGAN) can achieve effective recommendation quality. However, CFGAN ignores item contents, which contain more latent preference features than just user ratings. It is important to consider both ratings and item contents in making preference predictions. This study aims to improve news recommendation by proposi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 25 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?