In clonal plant populations, a number of genetically identical ramets form a genet. While coexisting ramets potentially perform independently, their behaviours not only depend on ages and sizes but are also constrained by genetic background. In this study, genet dynamics and its variability among neighbouring genets were investigated based on the ramet demography of each genet in Convallaria keiskei. Genet dynamics were first formulated as a matrix model with the two components of clonal growth (clonal reproduction) and survival‐transitions between ramet size classes. Then, a statistical estimation of the matrix elements was established using three datasets: aboveground demographic censuses, belowground directional rhizome connections and genetic identification of ramets. Finally, genet growth rates reflecting both the changes of clonal growth and ramet size growth were estimated and compared for fundamental demographic elements among genets. Over three years of aboveground annual censuses of a 28 × 2 m plot, 2021 ramets were identified as belonging to 28 genotypes. Belowground excavation detected 515 clonal fragments. Genet growth rate of three dominant genets varied with medians of 1.13, 1.02 and 1.05; 95% credible intervals of the posterior distributions did not overlap between the genet with the largest median and the others. The variation was caused primarily by differences in clonal growth rather than survival‐transitions between size classes. Clonal growth by branching was rarer than at the tips but contributed to the maintenance of the genet. Therefore, both clonal growth frequencies and connecting patterns of ramets caused the variation of genet dynamics and established genets persist for a long time through the positive growth rates, which would contribute to maintain a population. We also conclude that fundamental demographic elements relating to clonal growth traits (the features of individual genets) strongly impact genet dynamics.