In the next-generation communication systems, multiple access (MA) will play a crucial role in achieving high throughput to support future-oriented services. Recently, rate-splitting multiple access (RSMA) has received much attention from both academia and industry due to its ability to flexibly mitigate inter-user interference in a broad range of interference regimes. Further, with the growing emphasis on spectrum resource utilization, integrated sensing and communication (ISAC) technology, which improves spectrum efficiency by merging communication and radar signals, is expected to be one of the key candidate technologies for the sixth-generation (6G) wireless networks. In this paper, we first investigate the evolution of existing MA techniques and basic principles of RSMA-assisted ISAC systems. Moreover, to make the future RSMA-assisted ISAC systems, we highlight prime technologies of 6G such as non-terrestrial networks (NTN), reconfigurable intelligent surfaces (RIS), millimeter wave (mmWave) and terahertz (THz) technologies, and vehicular-to-everything (V2X), along with the main technical challenges and potential benefits to pave the way for RSMA-assisted ISAC systems.