2016
DOI: 10.4103/0019-509x.180832
|View full text |Cite
|
Sign up to set email alerts
|

Next generation sequencing analysis of lung cancer datasets: A functional genomics perspective

Abstract: Cigarette smoking leads to serious epidemics in humans, creating torsion of infection in epithelial cells lining the respiratory tracts. Several researchers in the recent past have theorized that the next generation sequencing (NGS), especially transcriptome sequencing has enhanced understanding lung cancers and other epithelial epidemics. Conversely, pathogenesis specific to lung cancer with respect to molecular fraction of genomic ribonucleic acid has some mutant effect in various populations like smokers wi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 1 publication
0
1
0
Order By: Relevance
“…Radiation, heavy metals, genotoxic agents, cigarette smoke, and other non-genetic factors are associated with NSCLC [2,3]. In terms of carcinogens, a covalent carcinogen—DNA adduct may result in LC by causing misincorporation leading to genetic mutations [4]. Research focussing on genetic reasons for NSCLC has demonstrated that epidermal growth factor receptor (EGFR) is the most commonly mutated protein that results in LC.…”
Section: Introductionmentioning
confidence: 99%
“…Radiation, heavy metals, genotoxic agents, cigarette smoke, and other non-genetic factors are associated with NSCLC [2,3]. In terms of carcinogens, a covalent carcinogen—DNA adduct may result in LC by causing misincorporation leading to genetic mutations [4]. Research focussing on genetic reasons for NSCLC has demonstrated that epidermal growth factor receptor (EGFR) is the most commonly mutated protein that results in LC.…”
Section: Introductionmentioning
confidence: 99%