Tristetraprolin (TTP), an RNA-binding protein encoded by the ZFP36 gene, is vital for neural differentiation; however, its involvement in neurodegenerative diseases such as Parkinson's disease (PD) remains unclear. To explore the role of TTP in PD, an in vitro 1-methyl-4-phenylpyridinium (MPP +) cell model and an in vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) of PD were used. Transfection of small interfering (si)-TTP RNA upregulated pro-oxidative NOX2 expression and ROS formation, downregulated anti-oxidative GSH and SOD activity;si-TTP upregulated pro-apoptotic cleaved-caspase-3 expression, and downregulated antiapoptotic Bcl-2 expression; while overexpression (OE)-TTP lentivirus caused opposite effects. Through database prediction, luciferase experiment, RNA immunoprecipitation (RIP), and mRNA stability analysis, we evaluated the potential binding sites of TTP to 3′-untranslated regions (3′-UTR) of NOX2 mRNA. TTP affected the NOX2 luciferase activity by binding to two sites in the NOX2 3′-UTR. RIP-qPCR confirmed TTP binding to both sites, with a higher affinity for site-2. In addition, TTP reduced the NOX2 mRNA stability. si-NOX2 and antioxidant N-acetyl cysteine (NAC) reversed si-TTP-induced cell apoptosis. In MPTP-treated mice, TTP expression increased and was co-located with dopaminergic neurons. TTP also inhibited NOX2 and decreased the oxidative stress in vivo. In conclusion, TTP protects against dopaminergic oxidative injury by promoting NOX2 mRNA 15048 | SUN et al.