The influence of embodiment flexibility on the performance of an acoustic journal bearing is presented. Two completely different embodiments of the bearing were investigated using three criteria of performance assessment that is torque at the start-up, amount of separation due to squeeze film pressure, and motion stability of the shaft running at speed. The embodiment with built-in flexibility proved to perform far better than the bearing for which overall flexibility was much less. However, considerations pertinent to the easy of machining and fatigue endurance mitigate the ranking of performance of the two embodiments investigated.