NGC 1856: Using Machine Learning Techniques to Uncover Detailed Stellar Abundances from MUSE Data
Randa Asa’d,
S. Hernandez,
J. M John
et al.
Abstract:We present the first application of the novel approach based on data-driven machine learning methods applied to Multi-Unit Spectroscopic Explorer (MUSE) field data to derive stellar abundances of star clusters. MUSE has been used to target more than 10,000 fields, and it is unique in its ability to study dense stellar fields such as stellar clusters providing spectra for each individual star. We use MUSE data of the extragalactic young stellar cluster NGC 1856, located in the Large Magellanic Cloud (LMC). We p… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.