Radionuclide tritium is widely used in the nuclear energy production industry and creates a threat to human health through radiation exposure. Herein, the radioactive elimination and radioprotective effect of hydrogen-rich water (HRW), a potential antioxidant with various medical applications, on tritiated water (HTO) exposure, was studied in vitro and in vivo. Results showed that intragastric administration of HRW effectively promoted the elimination of urinary tritium, decreased the level of serum tritium and tissue-bound tritium (OBT), and attenuated the genetic damage of blood cells in mice exposed to HTO (18.5 MBq/kg). Pretreatment with HRW effectively reduces tritium accumulation in HTO-treated human blood B lymphocyte AHH-1 cells. In addition, the anti-oxidative properties of HRW could attenuate the increased intracellular ROS (such as O2•-, •OH and ONOO−), resulting in reversing the exhaustion of cellular endogenous antioxidants (reduced GSH and SOD), decreasing lipid peroxidation (MDA), relieving DNA oxidative damage, and depressing cell apoptosis and cytotoxicity induced by HTO exposure. In conclusion, HRW is expected to be an effective radioactive elimination agent through the competition effect of isotope exchange or a radioprotective agent by scavenging free radicals induced by HTO exposure.