A series of five
rationally designed decapeptides [DEHGTAVMLK (DP1), THMVLAKGED (DP2),
GTAVMLKDEH (Term-DEH), TMVLDEHAKG (Mid-DEH), and DEHGGGGDEH (Bis-DEH)]
have been studied for their interactions with Cu(II) and Mn(II) ions.
The peptides, constructed including the most prevalent amino acid
content found in the cell-free extract of
Deinococcus radiodurans
(DR), play a fundamental role in the antioxidant mechanism related
to its exceptional radioresistance. Mn(II) ions, in complex with these
peptides, are found to be an essential ingredient for the DR protection
kit. In this work, a detailed characterization of Cu(II) systems was
included, because Cu(II)–peptide complexes have also shown
remarkable antioxidant properties. All peptides studied contain in
their sequence coordinating residues that can bind effectively Mn(II)
or Cu(II) ions with high affinity, such as Asp, Glu, and His. Using
potentiometric techniques, NMR, EPR, UV–vis, and CD spectroscopies,
ESI-MS spectrometry, and molecular model calculations, we explored
the binding properties and coordination modes of all peptides toward
the two metal ions, were able to make a metal affinity comparison
for each metal system, and built a structural molecular model for
the most stable Cu(II) and Mn(II) complexes in agreement with experimental
evidence.