Cubic boron nitride is becoming an alternative cutting tool material for machining under demanding conditions, displaying superior wear performance and machined parts with higher quality. The current need to reduce the cobalt content in these tools led to this study and focused on alternative binder materials for cubic boron nitride cutting tools. This work addresses several nickel–cobalt-based materials, regarding their microstructure, mechanical (hardness and shear strength), and tribological performance. The best results were attained when adding tungsten carbide to nickel–cobalt, once nickel–cobalt–tungsten carbide was found to display the higher mechanical properties, together with the higher wear resistance.