Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Among soybean diseases, rust, caused by Phakopsora pachyrhizi, stands out as one of the most destructive. Resistance inducers may be a great alternative to reduce the yield losses caused by this disease from the perspective of more sustainable agriculture. In this study, soybean plants were sprayed with water (control) or with Cautha [referred to as induced resistance (IR) stimulus after that] and inoculated or non‐inoculated with P. pachyrhizi. The germination of urediniospores was significantly reduced by 22%, 26%, 19%, and 25% for the IR stimulus rates of 2.5, 5, 10, and 20 mL/L, respectively. Rust severity was significantly reduced by 27%, 19%, 23%, 25%, and 41% at 7, 9, 11, 13, and 15 days after inoculation, respectively, and the area under the disease progress curve significantly decreased by 27% for IR stimulus‐sprayed plants compared to water‐sprayed plants. For infected plants, foliar concentrations of Ca, N, chlorophyll a + b, and carotenoids were higher for IR‐stimulus sprayed plants than for water‐sprayed plants. Lower concentrations of malondialdehyde (less cellular damage) and reactive oxygen species (hydrogen peroxide and superoxide anion radical) along with great activities of antioxidative enzymes (ascorbate peroxidase, catalase, glutathione reductase, and superoxide dismutase) helped to reduce rust symptoms for IR‐stimulus sprayed plants. On top of that, these plants also showed greater foliar concentrations of total soluble phenols and lignin as well as increased activities of defence‐related enzymes (chitinase, β‐1,3‐glucanase, phenylalanine ammonia‐lyase, peroxidase, polyphenoloxidase, and lipoxygenase). These results strongly support the potential of using this IR stimulus to increase soybean resistance against infection by P. pachyrhizi and, at the same time, to act directly against the germination of the urediniospores.
Among soybean diseases, rust, caused by Phakopsora pachyrhizi, stands out as one of the most destructive. Resistance inducers may be a great alternative to reduce the yield losses caused by this disease from the perspective of more sustainable agriculture. In this study, soybean plants were sprayed with water (control) or with Cautha [referred to as induced resistance (IR) stimulus after that] and inoculated or non‐inoculated with P. pachyrhizi. The germination of urediniospores was significantly reduced by 22%, 26%, 19%, and 25% for the IR stimulus rates of 2.5, 5, 10, and 20 mL/L, respectively. Rust severity was significantly reduced by 27%, 19%, 23%, 25%, and 41% at 7, 9, 11, 13, and 15 days after inoculation, respectively, and the area under the disease progress curve significantly decreased by 27% for IR stimulus‐sprayed plants compared to water‐sprayed plants. For infected plants, foliar concentrations of Ca, N, chlorophyll a + b, and carotenoids were higher for IR‐stimulus sprayed plants than for water‐sprayed plants. Lower concentrations of malondialdehyde (less cellular damage) and reactive oxygen species (hydrogen peroxide and superoxide anion radical) along with great activities of antioxidative enzymes (ascorbate peroxidase, catalase, glutathione reductase, and superoxide dismutase) helped to reduce rust symptoms for IR‐stimulus sprayed plants. On top of that, these plants also showed greater foliar concentrations of total soluble phenols and lignin as well as increased activities of defence‐related enzymes (chitinase, β‐1,3‐glucanase, phenylalanine ammonia‐lyase, peroxidase, polyphenoloxidase, and lipoxygenase). These results strongly support the potential of using this IR stimulus to increase soybean resistance against infection by P. pachyrhizi and, at the same time, to act directly against the germination of the urediniospores.
Soybean (Glycine max (L.) Merr.) is one of the most profitable crops among the legumes grown worldwide. The occurrence of rust epidemics, caused by Phakopsora pachyrhizi, has greatly contributed to yield losses and an abusive use of fungicides. Within this context, this study investigated the potential of using a phosphite of nickel (Ni) and potassium (K) [referred to as induced resistance (IR) stimulus] to induce soybean resistance against infection by P. pachyrhizi. Plants were sprayed with water (control) or with IR stimulus and non-inoculated or inoculated with P. pachyrhizi. The germination of urediniospores was greatly reduced in vitro by 99% using IR stimulus rates ranging from 2 to 15 mL/L. Rust severity was significantly reduced from 68 to 78% from 7 to 15 days after inoculation (dai). The area under the disease progress curve significantly decreased by 74% for IR stimulus-sprayed plants compared to water-sprayed plants. For inoculated plants, foliar concentrations of K and Ni were significantly higher for IR stimulus treatment than for the control treatment. Infected and IR stimulus-sprayed plants had their photosynthetic apparatus (a great pool of photosynthetic pigments, and lower values for some chlorophyll a fluorescence parameters) preserved, associated with less cellular damage (lower concentrations of malondialdehyde, hydrogen peroxide, and anion superoxide) and a greater production of phenolics and lignin than plants from the control treatment. In response to infection by P. pachyrhizi, defense-related genes (PAL2.1, PAL3.1, CHIB1, LOX7, PR-1A, PR10, ICS1, ICS2, JAR, ETR1, ACS, ACO, and OPR3) were up-regulated from 7 to 15 dai for IR stimulus-sprayed plants in contrast to plants from the control treatment. Collectively, these findings provide a global picture of the enhanced capacity of IR stimulus-sprayed plants to efficiently cope with fungal infection at both biochemical and physiological levels. The direct effect of this IR stimulus against urediniospores’ germination over the leaf surface needs to be considered with the aim of reducing rust severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.