1 Central nicotinic receptor function examined in vitro, by measuring nicotine-induced [3H]-dopamine release from rat striatal synaptosomes.2 The agonists (-)-nicotine, acetylcholine, 1,1-dimethyl-4-phenylpiperazinium (DMPP) and cytisine (10-7-10-4 M) all increased [3H]-dopamine release in a concentration-dependent manner. Cytisine did not produce a full agonist response, compared to the other agonists. 3 The actions of nicotine, acetylcholine and cytisine were largely dependent on external Ca2". In contrast, DMPP (l0-s and 10-4 M) evoked a marked release of [3H]-dopamine even in the absence of Ca2". Nevertheless, in the presence of external Ca2", responses to DMPP were completely blocked by the nicotinic antagonists chlorisondamine and mecamylamine (5 x 1-0 M); in the absence of external Ca2", blockade was only partial. 4 Chlorisondamine, mecamylamine and dihydro-p-erythroidine (l0-8-0-4 M) produced a concentration-dependent block of responses to nicotine (10-6 M). Approximate ICm values were 1.6, 0.3 and 0.2 x 10-6, respectively. Chlorisondamine and mecamylamine blocked responses to nicotine (107-10-4 M) insurmountably, whereas dihydro-p-erythroidine behaved in a surmountable fashion.5 The occurrence of use-dependent block was tested by briefly pre-exposing the synaptosomes to nicotine during superfusion with antagonist, and determining the response to a subsequent nicotine application. Consistent with a possible channel blocking action, brief pre-exposure to agonist increased the antagonist potency of chlorisondamine (approximately 25 fold). No significant use-dependent block was detected with dihydro-p-erythroidine.