Background
Niemann-Pick disease type C (NPC) is a rare lysosomal neurovisceral storage disease caused by mutations in the NPC 1 (95%) or NPC2 (5%) genes. The products of NPC1 and NPC2 genes play considerable roles in glycolipid and cholesterol trafficking, which could consequently lead to NPC disease with variable phenotypes displaying a broad spectrum of symptoms.
Materials
In the present study 35 Iranian NPC unrelated patients were enrolled. These patients were first analysed by the Filipin Staining test of cholesterol deposits in cells for NPC diagnostics. Genomic DNA was extracted from the samples of peripheral blood leukocytes in EDTA following the manufacturer's protocol. All exon–intron boundaries and coding exons of the NPC1gene were amplified by polymerase chain reaction (PCR) using appropriate sets of primers. Thereafter, the products of PCR were sequenced and analysed using the NCBI database (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The variants were reviewed by some databases including the Human Gene Mutation Database (HGMD) (http://www.hgmd.cf.ac.uk/ac/index.php) and ClinVar (https://www.ncbi.nlm.nih.gov/clinvar (. Moreover, all the variants were manually classified in terms of the American College of Medical Genetics and Genomics (ACMG) guideline.
Results
The sequence analysis revealed 20 different variations, 10 of which are new, including one nonsense mutation (c.406C > T); three small deletions, (c.3126delC, c.2920_2923delCCTG, and c.2037delG); and six likely pathogenic missense mutations, (c.542C > A, c.1970G > A, c.1993C > G, c.2821 T > C, c.2872C > G, and c.3632 T > A). Finally, the pathogenicity of these new variants was determined using the ACMG guidelines.
Conclusion
The present study aimed to facilitate the prenatal diagnosis of NPC patients in the future. In this regard, we identified 10 novel mutations, and verified that the majority of them occurred in six NPC1 exons (5, 8, 9, 13, 19, and 21), that should be considered with a high priority for Iranian patients' cost-effective evaluation.