2020
DOI: 10.15330/cmp.12.1.189-198
|View full text |Cite
|
Sign up to set email alerts
|

Nilpotent Lie algebras of derivations with the center of small corank

Abstract: Let $\mathbb K$ be a field of characteristic zero, $A$ be an integral domain over $\mathbb K$ with the field of fractions $R=Frac(A),$ and $Der_{\mathbb K}A$ be the Lie algebra of all $\mathbb K$-derivations on $A$. Let $W(A):=RDer_{\mathbb K} A$ and $L$ be a nilpotent subalgebra of rank $n$ over $R$ of the Lie algebra $W(A).$ We prove that if the center $Z=Z(L)$ is of rank $\geq n-2$ over $R$ and $F=F(L)$ is the field of constants for $L$ in $R,$ then the Lie algebra $FL$ is contained in a locally nilpotent s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?