Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Photothermal hydrogels (PTHs) are considered next‐generation biomaterials as they offer remotely defined biophysical information of the extracellular milieu. PTHs allow precise and non‐genetic control for the regeneration of native tissues, which is the ultimate goal of tissue engineering (TE). Molecular and physical properties of PTHs, such as components, structural configurations, and mechanical characteristics, collectively serve as determinants for understanding the dynamic tissue response and clinical translation. PTHs have entered a period of fruition due to the development of numerous manufacturing technologies and polymeric matrices. Herein, this review comprehensively and meticulously elucidates the mechanisms of regenerative therapeutics underlying the design and fabrication of PTHs. Recent advances in the photothermal principles and various categories of photothermal agents (PTAs) have been extensively discussed. Vital components and structures of PTHs are summarized to enable efficacious and precise therapeutic energy delivery. Emerging applications of PTHs in TE are also demonstrated, which expand the strategies for the intrinsic regeneration of injured tissues. Then deliberate the structural and chemical engineering of PTHs to enhance prognosis while highlighting the challenges associated with clinical translation. In this review, we aim to provide guidance and prospects for exploration and innovation of PTHs in the field of TE.
Photothermal hydrogels (PTHs) are considered next‐generation biomaterials as they offer remotely defined biophysical information of the extracellular milieu. PTHs allow precise and non‐genetic control for the regeneration of native tissues, which is the ultimate goal of tissue engineering (TE). Molecular and physical properties of PTHs, such as components, structural configurations, and mechanical characteristics, collectively serve as determinants for understanding the dynamic tissue response and clinical translation. PTHs have entered a period of fruition due to the development of numerous manufacturing technologies and polymeric matrices. Herein, this review comprehensively and meticulously elucidates the mechanisms of regenerative therapeutics underlying the design and fabrication of PTHs. Recent advances in the photothermal principles and various categories of photothermal agents (PTAs) have been extensively discussed. Vital components and structures of PTHs are summarized to enable efficacious and precise therapeutic energy delivery. Emerging applications of PTHs in TE are also demonstrated, which expand the strategies for the intrinsic regeneration of injured tissues. Then deliberate the structural and chemical engineering of PTHs to enhance prognosis while highlighting the challenges associated with clinical translation. In this review, we aim to provide guidance and prospects for exploration and innovation of PTHs in the field of TE.
Compared with conventional therapies, photoimmunotherapy offers precise targeted cancer treatment with minimal damage to healthy tissues and reduced side effects, but its efficacy may be limited by shallow light penetration and the potential for tumor resistance. Here, an acceptor–donor‐acceptor (A‐D‐A)‐structured nanoaggregate is developed with dual phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), triggered by single near‐infrared (NIR) light. Benefiting from strong intramolecular charge transfer (ICT), the A–D–A‐structured nanoaggregates exhibit broad absorption extending to the NIR region and effectively suppressed fluorescence, which enables deep penetration and efficient photothermal conversion (η = 67.94%). A suitable HOMO–LUMO distribution facilitates sufficient intersystem crossing (ISC) to convert ground‐state oxygen (3O2) to singlet oxygen (1O2) and superoxide anions (·O2−), and catalyze hydroxyl radical (·OH) generation. The enhanced ICT and ISC effects endow the A–D–A structured nanoaggregates with efficient PTT and PDT for cervical cancer, inducing efficient immunogenic cell death. In combination with clinical aluminum adjuvant gel, a novel photoimmunotherapy strategy for cervical cancer is developed and demonstrated to significantly inhibit primary and metastatic tumors in orthotopic and intraperitoneal metastasis cervical cancer animal models. The noninvasive therapy strategy offers new insights for clinical early‐stage and advanced cervical cancer treatment.
Organic photothermal materials have attracted extensive attention due to their designable molecular structure, tunable excited‐state properties, and excellent biocompatibility, however, the development of near‐infrared II (NIR‐II) absorbing organic photothermal materials with high photothermal conversion efficiency (PTCE) and molar extinction coefficient (ɛ) remains challenging. Herein, a novel “electron‐donor iteration” strategy is proposed to construct organic photothermal dendrimers (CR‐DPA‐T, CR‐(DPA)2‐T and CR‐(DPA)3‐T) with donor‐π‐acceptor‐π‐donor (D‐π‐A‐π‐D) features and diradical characteristics. Owing to the enhanced D–A effect and intramolecular motions, their absorption and photothermal capacity increase as the generation grows. Surprisingly, an excellent photothermal performance (ɛ1064 × PTCE1064) with a superb value of 2.85 × 104 in the NIR‐II region is achieved for CR‐(DPA)3‐T nanoparticles (CR‐(DPA)3‐T NPs) compared to most reported counterparts. Besides, CR‐(DPA)3‐T NPs exhibit superior antitumor efficacy by the synergistic effect of photothermal therapy (PTT) and immunotherapy, efficiently inhibiting the growth of both primary and distant tumors. To the best knowledge, organic photothermal dendrimer is for the first time reported, and a universal donor engineering strategy is offered to develop NIR‐II‐absorbing organic photothermal materials for photothermal immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.