Development of shape memory polymer materials with integrated self-healing ability, shape memory property, and outstanding mechanical properties is a challenge. Herein, isophorone diisocyanate, polytetramethylene ether glycol, dimethylglyoxime, and glycerol have been used to preparation polyurethane by reacting at 80 C for 6 h. Then, graphene oxide (GO) was added and the reaction keep at 80 C for 4 h to obtain polyurethane/GO composite with selfhealing and shape memory properties. Scanning electron microscopy shows that the GO sheets were dispersed uniformly in the polyurethane matrix. The thermal stability was characterized by thermogravimetric analyses. The tensile test shows that the Young's modulus of the composites increases from 38.57 ± 4.35 MPa for pure polyurethane to 95.36 ± 10.35 MPa for the polyurethane composite with a GO content of 0.5 wt%, and the tensile strength increases from 6.28 ± 0.67 to 15.65 ± 1.54 MPa. The oxime carbamate bond and hydrogen bond endow the composite good self-healing property. The healing efficiency can reach 98.84%. In addition, the composite has excellent shape memory property, with a shape recovery ratio of 88.6% and a shape fixation ratio of 55.2%. This work provides a promising way to fabricate stimulusresponsive composite with versatile functions.