Phosphorus (P) plays a strategic role in agricultural production as well as in the occurrence of freshwater and marine eutrophication episodes throughout the world. Moreover, the scarcity and uneven distribution of minable P resources is raising concerns about the sustainability of long-term exploitation. In this paper we analyze the P cycle in anthropic systems with an original multiscale approach (world region, country, and large basin scales) in two contrasting world regions representative of different trajectories in socioeconomic development for the 1961-2009 period: Europe (EU-27)/France and the Seine River Basin, and Asia (ASEAN-8)/Vietnam and the Red River Basin. Our approach highlights different trends in the agricultural and food production systems of the two regions. Whereas crop production increased until the 1980s in Europe and France and has stabilized thereafter, in ASEAN-8 and Vietnam it began to increase in the 1980s and it is still rising today. These trends are related to the increasing use of fertilizers, although in European countries the amount of fertilizers sharply decreased after the 1980s. On average, the total P delivered from rivers to the sea is 3 times higher for ASEAN-8 (300 kg P km À2 yr
À1) than for EU-27 countries (100 kg P km À2 yr
À1) and is twice as high in the Red River (200 kg P km À2 yr
À1) than in the Seine River (110 kg P km À2 yr
À1), with agricultural losses to water in ASEAN-8 3 times higher than in EU-27. Based on the P flux budgets, this study discusses early warnings and management options according to the particularities of the two world regions, newly integrating the perspective of surface water quality with agricultural issues (fertilizers, crop production, and surplus), food/feed exchanges, and diet, defining the so-called water-agro-food system.