Soot formation is an inevitable consequence of the combustion of carbonaceous fuels in environments rich in reducing agents. Efficient management of pollution in various contexts, such as industrial fires, vehicle engines, and similar applications, relies heavily on the subsequent oxidation of soot particles. Among the oxidizing agents employed for this purpose, oxygen, carbon dioxide, water vapor, and nitrogen dioxide have all demonstrated effectiveness. The scientific framework of this research can be elucidated through the following key aspects: (i) This review situates itself within the broader context of pollution management, emphasizing the importance of effective soot oxidation in reducing emissions and mitigating environmental impacts. (ii) The central research question of this study pertains to the identification and evaluation of catalysts for soot oxidation, with a specific emphasis on ceria-based catalysts. The formulation of this research question arises from the need to enhance our understanding of catalytic mechanisms and their application in environmental remediation. This question serves as the guiding principle that directs the research methodology. (iii) This review seeks to investigate the catalytic mechanisms involved in soot oxidation. (iv) This review highlights the efficacy of ceria-based catalysts as well as other types of catalysts in soot oxidation and elucidate the underlying mechanistic strategies. The significance of these findings is discussed in the context of pollution management and environmental sustainability. This study contributes to the advancement of knowledge in the field of catalysis and provides valuable insights for the development of effective strategies to combat air pollution, ultimately promoting a cleaner and healthier environment.