Periodontal disease (PD), a severe form of gum disease, is among the most prevalent chronic infection in humans and is associated with complex microbial synergistic dysbiosis in the subgingival cavity. The immune system of the body interacts with the microbes as the plaque extends and propagates below the gingival sulcus. Once bacteria reach the gingival sulcus, it can enter the blood stream and affect various areas of the human body. The polymicrobial nature of periodontal disease, if left untreated, promotes chronic inflammation, not only within the oral cavity, but also throughout the human body. Alterations seen in the concentrations of healthy gut microbiota may lead to systemic alterations, such as gut motility disorders, high blood pressure, and atherosclerosis. Although gut microbiome has been shown to play a vital role in intestinal motility functions, the role of oral bacteria in this setting remains to be investigated. It is unclear whether oral microbial DNA is present in the large intestine and, if so, whether it alters the gut microbiome. In addition, polybacterial infection induced PD reduced nitric oxide (NO) synthesis and antioxidant enzymes in rodent colon. In this review, we will discuss the interactions between oral and gut microbiome, specifics of how the oral microbiome may modulate the activities of the gut microbiome, and possible ramifications of these alterations.