The aim of the study was to compare telomere lengths and circulating proteasome concentrations in patients with different stages of diabetic retinopathy and type 1 diabetes in Latvia and Lithuania. Methods. Patients with no diabetic retinopathy and with non-proliferative diabetic retinopathy were included in the NDR/NPDR group (n = 187). Patients with proliferative diabetic retinopathy and status post laser-photocoagulation were included int the PDR/LPC group (n = 119). Telomeres were evaluated by real-time quantitative polymerase chain reaction. Proteasome concentration was measured by ELISA. Results. Telomeres were longer in PDR/LPC (ΔCT 0.21 (0.12–0.28)) vs. NDR/NPDR (ΔCT 0.18 (0.1–0.28)), p = 0.036. In NDR/NPDR, telomeres were correlated negatively with age (R = −0.17, p = 0.019), BMI (R = −0.21, p = 0.004), waist/hip ratio (R = −0.21, p = 0.005), total cholesterol (R = −0.18, p = 0.021), and low-density cholesterol (R = −0.20, p = 0.010), and positively with estimated glomerular filtration rate (eGFR) (R = 0.28, p < 0.001). None of the above correlations were observed in PRD/LPC. Proteasome concentrations were lower in PDR/LPC (130 (90–210) ng/mL) vs. NDR/NPDR (150 (100–240) ng/mL), p = 0.024. This correlated negatively with eGFR (R = −0.17, p = 0.025) in the NDR/NPDR group and positively with age (R = 0.23, p = 0.014) and systolic blood pressure (R = 0.20, p = 0.032) in the PRD/LPC group. Telomere lengths did not correlate with proteasome concentrations. Conclusion. Longer telomeres and lower circulating proteasome concentrations are observed in patients with type 1 diabetes and advanced diabetic retinopathy.