The free radical nitric oxide (NO) and the phenolic phytohormone salicylic acid (SA) are signal molecules which exert key functions at biochemical and physiological levels. Abiotic stresses, especially in early plant development, impose the biggest threats to agricultural systems and crop yield. These stresses impair plant growth and subsequently cause a reduction in root development, affecting nutrient uptake and crop productivity. The molecules NO and SA have been identified as robust tools for efficiently mitigating the negative effects of abiotic stress in plants. SA is engaged in an array of tasks under adverse environmental situations. The function of NO depends on its cellular concentration; at a low level, it acts as a signal molecule, while at a high level, it triggers nitro-oxidative stress. The crosstalk between NO and SA involving different signalling molecules and regulatory factors modulate plant function during stressful situations. Crosstalk between these two signalling molecules induces plant tolerance to abiotic stress and needs further investigation. This review aims to highlight signalling aspects of NO and SA in higher plants and critically discusses the roles of these two molecules in alleviating abiotic stress.