Patients with diabetes have an increased risk of developing atherosclerosis. Endothelial dysfunction, characterized by the lowered bioavailability of endothelial NO synthase (eNOS)-derived NO, is a critical inducer of atherosclerosis. However, the protective aspect of eNOS in diabetes-associated atherosclerosis remains controversial, a likely consequence of its capacity to release both protective NO or deleterious oxygen radicals in normal and disease settings, respectively. Harnessing the atheroprotective activity of eNOS in diabetic settings remains elusive, in part due to the lack of endogenous eNOS-specific NO release activators. We have recently shown in vitro that eNOS-derived NO release can be increased by blocking its binding to Caveolin-1, the main coat protein of caveolae, using a highly specific peptide, CavNOxin. However, whether targeting eNOS using this peptide can attenuate diabetes-associated atherosclerosis is unknown. In this study, we show that CavNOxin can attenuate atherosclerotic burden by ∼84% in vivo. In contrast, mice lacking eNOS show resistance to CavNOxin treatment, indicating eNOS specificity. Mechanistically, CavNOxin lowered oxidative stress markers, inhibited the expression of proatherogenic mediators, and blocked leukocyte-endothelial interactions. These data are the first to show that endogenous eNOS activation can provide atheroprotection in diabetes and suggest that CavNOxin is a viable strategy for the development of antiatherosclerotic compounds.Diabetes is widely regarded as an independent risk factor for the development of cardiovascular diseases, with ;80% of cardiovascular mortality and morbidity being linked to macrovascular complications, such as atherosclerosis (1-3). The increased risk of development of vascular complications in individuals with type 1 (T1D) or type 2 diabetes (T2D) occurs despite intensive glycemic control, stressing the need for novel approaches to lessen the burden of diabetes-mediated macrovascular injury (4).The vascular endothelium plays a crucial role in diabetesassociated atherosclerosis through the regulation of vessel permeability, inflammation, coordination of leukocyte trafficking, and thrombosis (1,5). Indeed, the function of the vascular endothelium is significantly impaired during diabetes, a phenomena termed endothelial dysfunction and characterized by the reduced bioavailability of an important endothelial cell mediator, nitric oxide (NO). Such chronic attenuation of endothelial-derived NO release promotes platelet and leukocyte activation and adhesion, compromises endothelial cell barrier integrity, and causes the upregulation of proinflammatory genes (6-8). Moreover, reduced NO-dependent vasodilation and increased leukocyte adhesion to the endothelium, both of which are hallmarks of endothelial dysfunction, have been observed in patients with diabetes and diabetic animal models (9-12). Similarly, in cultured endothelial cells exposed to high glucose, lowered endothelial NO synthase (eNOS)-derived NO release was observed (13-15). In...