“…Among these, due to its rapidity, sensibility and low costs, the electrochemical aproach has become one of the most popular and extensively used analytical tools [26]. To create electrochemical sensors with increased sensitivity and accuracy for nitrite detection, different nanomaterials have been embedded on electrode surfaces: nickel/PDDA/reduced graphene oxide [27], Ag-Fe 3 O 4 -graphene oxide magnetic nanocomposites [28], Fe 3 O 4 -reduced graphene oxide composite [29], metalorganic framework derived rod-like Co@carbon [30], La-based perovskite-type lanthanum aluminate nanorod-incorporated graphene oxide nanosheets [31], cobalt oxide decorated reduced graphene oxide and carbon nanotubes [32], gold-copper nanochain network [33], carbon nanotube (CNTs), chitosan and iron (II) phtalocyanine (C 32 H 16 FeN 8 ) composite [34]; gold nanoparticles/chitosan/MXenes nanocomposite [35], worm-like gold nanowires and assembled carbon nanofibers-CVD graphene hybrid [36]; photochemically-made gold nanoparticles [37], or graphene nanoparticles [38]. Among these, the special properties of graphene are unequivocal and long-time recognized [39], justifying their extensive applicability and usage in sensors technology [40,41].…”