The purification of the primary treated domestic sewage was performed in the present study through the horizontal sub-surface flow constructed wetland (CW) of 10 × 3.5 m dimension. The study was performed using three setups of CW 1 (Unplanted CW), CW 2 (CW planted with macrophyte Typha latifolia), and CW 3 (CW planted with two species of macrophyte T. latifolia and Commelina benghalensis). The purification experiments were performed by converting one type of CW into the other form sequentially, i.e., CW 1 was built first and after the experiments, it was converted into CW 2 and then CW 3. The CW was filled with a layer of coarse and fine gravel of 70 cm depth as filter media in 1:2 ratio. Each set of wetland was operated for 3 months (12 wk) during which the treatment performance of wetlands for basic physicochemical parameters was evaluated. The CW was operated in continuous mode at an average hydraulic loading rate of 250 L h− 1 and the treated effluent was analysed twice every week at four different sampling points having hydraulic retention times (HRT) of 12, 24, 36 and 48 h for important sewage quality parameters All the three setups of CW were able to clean the primary treated sewage significantly. Among the three sets of wetlands used, CW 3 was the best performer removing 79, 77, 79, 79, and 78% of biochemical oxygen demand, chemical oxygen demand, nitrate, ammonia, and phosphate respectively in 48 h HRT. Among the three sets of wetlands, the CW 3 removed the highest percent of total coliforms, fecal coliforms, and E. coli as 64, 61 and 52% respectively.