Keywords:Dissolved inorganic nitrogen Hypoxia Anthropogenic nitrogen inputs Land use Nutrient pollution Climate change s u m m a r y A quantitative understanding of riverine nitrogen (N) export in response to human activities and climate change is critical for developing effective watershed N pollution control measures. This study quantified net anthropogenic N inputs (NANI) and riverine dissolved inorganic N (DIN = NO 3 -N + NH 4 -N + NO 2 -N) export for the upper Jiaojiang River catchment in eastern China over the 1980-2010 time period and examined how NANI, hydroclimate, and land-use practices influenced riverine DIN export. Over the 31-yr study period, riverine DIN yield increased by 1.6-fold, which mainly results from a $77% increase in NANI and increasing fractional delivery of NANI due to a $55% increase in developed land area. An empirical model that utilizes an exponential function of NANI and a power function of combining annual water discharge and developed land area percentage could account for 89% of the variation in annual riverine DIN yields in 1980-2010. Applying this model, annual NANI, catchment storage, and natural background sources were estimated to contribute 57%, 22%, and 21%, respectively, of annual riverine DIN exports on average. Forecasting based on a likely future climate change scenario predicted a 19.6% increase in riverine DIN yield by 2030 due to a 4% increase in annual discharge with no changes in NANI and land-use compared to the 2000-2010 baseline condition. Anthropogenic activities have increased both the N inputs available for export and the fractional export of N inputs, while climate change can further enhance riverine N export. An integrated N management strategy that considers the influence of anthropogenic N inputs, land-use and climate change is required to effectively control N inputs to coastal areas.