Tolerance is the ability of a plant to regrow or reproduce following damage. While experimental studies typically measure tolerance in response to the intensity of herbivory (i.e., the amount of leaf tissue removed in one attack), the impact of how many times plants are attacked during a growing season (i.e., the frequency of damage) is virtually unexplored. Using experimental defoliations that mimicked patterns of attack by leaf-cutter ants (Atta spp.), we examined how the frequency of herbivory influenced plant tolerance traits in six tree species in Brazil's Cerrado. For 2 years we quantified how monthly and quarterly damage influenced individual survivorship, relative growth rate, plant architecture, flowering, and foliar chemistry. We found that the content of leaf nitrogen (N) increased among clipped individuals of most species, suggesting that Atta influences the allocation of resources in damaged plants. Furthermore, our clipping treatments affected tree architecture in ways thought to promote tolerance. However, none of our focal species exhibited a compensatory increase in growth (increment in trunk diameter) in response to herbivory as relative growth rates were significantly lower in clipped than in unclipped individuals. In addition, the probability of survival was much lower for clipped plants, and lower for plants clipped monthly than those clipped quarterly. For plants that did survive, simulated herbivory dramatically reduced the probability of flowering. Our results were similar across a phylogenetically distinct suite of species, suggesting a potential extendability of these findings to other plant species in this system.