We studied broadleaf and needle-leaf forests along an elevation gradient (600-1200 m) at Whiteface Mountain, New York, to determine relationships among temperature, mineral N availability, and aboveground net primary productivity (ANPP) and controls on the latter two variables. We measured net N mineralization during the growing season, annual litterfall quantity and quality, aboveground woody biomass accumulation, and soil organic matter quality. Inorganic N deposition from cloudwater markedly increases mineral N availability above 1000 m in this region. Consequently, mineral N availability across the climosequence remains relatively constant because N mineralization decreases with increasing elevation. Across this climosequence, air temperature (as growing season degree-days) exerted the most control on ANPP. Nitrogen mineralization was most strongly related to soil growing season degree-days and less so to lignin to N ratios in litter. ANPP was correlated with N mineralization but not with mineral N availability. Combining our data with those from similar studies in other boreal and cool temperate forests shows that N mineralization and ANPP are correlated at local, regional, and interbiome scales. Regarding the persistent question concerning cause and effect in the N mineralization -forest productivity relationship, our data provide evidence that at least in this case, forest productivity is a control on N mineralization. We studied broadleaf and needle-leaf forests along an elevation gradient (600-1200 m) at Whiteface Mountain, New York, to determine relationships among temperature, mineral N availability, and aboveground net primary productivity (ANPP) and controls on the latter two variables. We measured net N mineralization during the growing season, annual litterfall quantity and quality, aboveground woody biomass accumulation, and soil organic matter quality. Inorganic N deposition from cloudwater markedly increases mineral N availability above 1000 m in this region. Consequently, mineral N availability across the climosequence remains relatively constant because N mineralization decreases with increasing elevation. Across this climosequence, air temperature (as growing season degree-days) exerted the most control on ANPP. Nitrogen mineralization was most strongly related to soil growing season degree-days and less so to lignin to N ratios in litter. ANPP was correlated with N mineralization but not with mineral N availability. Combining our data with those from similar studies in other boreal and cool temperate forests shows that N mineralization and ANPP are correlated at local, regional, and interbiome scales. Regarding the persistent question concerning cause and effect in the N mineralization -forest productivity relationship, our data provide evidence that at least in this case, forest productivity is a control on N mineralization.
Résumé :Nous avons étudié des forêts de feuillus et de résineux le long d'un gradient altitudinal (600-1200 m) à Whiteface Mountain dans l'État de New York pou...