This study investigates whether clear-cut forest harvesting leads to alterations in the decadal-scale biogeochemical nitrogen (N) cycles of moist temperate forest ecosystems. Using a harvested temperate red spruce (Picea rubens Sarg.) forest chronosequence in Nova Scotia, Canada, representing <1 to >80 year old postharvest conditions, alongside a reference old-growth (125+ year old) site with no documented history of disturbance, we examine harvesting-related changes in soil N pools and fluxes. Specifically, we quantify soil N storage with depth and age across the forest chronosequence, examine changes in physical fractions and δ 15 N of soil N through depth and time, and quantify gross soil N transformation rates through depth and time using a 15 N isotope dilution technique. Our findings point to a large loss of total N in the soil pool, particularly within the deep soil (>20 cm) and organomineral fractions. A pulse of available mineralized N (as ammonium) was observed following harvesting (mean residence time (MRT) > 6 days), but its MRT dropped to <1 day 80 years following harvesting, in contrast to the MRT of 2-3 days observed in the reference old-growth forest site. These mineralization patterns coupled with inferred leaching losses to groundwater are consistent with storage estimates that suggest soil N may not reaccrue for almost a century following this disturbance.