Maximizing rice yield potential has always been the focus of high-yield rice cultivation research. For high-yield rice cultivation and breeding, more research into the link between yield and yield components is essential. In this experiment, 38 rice varieties with different yield types and 185 rice varieties as materials were chosen. The relationships between yield and yield components were studied. The regulation effects of total nitrogen application rate (TNAR) on yield and yield components were observed. The results showed that (1) the grain yield of high-yield varieties was 189.3−195.6%, 76.1−77.7%, and 27.0−28.7% higher than that of super-low-yield, low-yield, and medium-yield varieties, respectively. Compared with rice varieties with other yield types, rice varieties with high-yield type have a higher total number of spikelets. (2) The spikelet number per panicle and total number of spikelets were significantly positively linked with grain yield, but significantly negatively correlated with filled grains and grain weight. (3) With an increase in TNAR (0−340 kg ha−1), the panicles, spikelet number per panicle, and total spikelets of rice varieties with different yield types increased gradually, and the filled grains and grain weight decreased gradually. The higher the TNAR, the more obvious the decrease in filled grains and grain weight. The grain yield of rice varieties with different yield types was the highest under the TNAR at 250 kg ha−1. The main factor contributing to its high yield was the substantial increase in total spikelets. The above results showed that increasing the spikelet number per panicle and total spikelets played a material role in improving rice yield.