Understanding nutrient balances in changing cropping systems is critical to appropriately adjust agronomic recommendations and inform breeding efforts to increase nutrient efficiencies. Research to determine the season‐long P, K, and S uptake and partitioning dynamics in maize (Zea mays L.) as affected by low, medium, and high plant density (PD) and N rate factors and their interactions was conducted over four site‐years in Indiana. Plant nutrient contents at maturity responded predominantly to N rate. Relative nutrient contents at silking compared with those at maturity were 47% for P, 100% for K, and 58% for S. Concentrations of P, K, and S varied less in leaf vs. stem (vegetative stage) and in ear vs. shoot (reproductive stage). Equivalent stoichiometric ratios were documented for N and S partitioning in leaf, stem, and ear components. The PD and N rate treatments did not modify P, K, and S nutrient partitioning to plant components during vegetative or reproductive periods (except for an N rate effect on leaf vs. stem P partitioning). Near silking, relative nutrient partitioning to the ear followed the order P > S > K. This mimicked the nutrient harvest indices observed at maturity, suggesting genetic modulation. Ratios of N to P, K, and S in whole‐plant tissues were influenced by N content changes in response to N rate but not by PD. As the season progressed, PD and N rates changed the absolute P, K, and S quantities (primarily reflecting biomass responses) but had little influence on nutrient ratios.