To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public criticism in lecture room B2, B-building (Viikki Campus, Latokartanonkaari 7, Helsinki) on May 8 th 2015, at 12 o'clock noon. Drainage to increase timber production has drastically decreased the area of undrained spruce swamp forests in northern Europe. In restoration by rewetting, drainage ditches are blocked to restore the original hydrology and, ultimately, the structure, function and ecosystem services of undrained boreal spruce swamp forests. This study quantifies the restoration success of rewetting regarding plant community composition, moss community carbon assimilation potential, Sphagnum biomass production and surface peat biogeochemistry, and aims to determine the main controls of success. The study sites comprised 18 rewetted, nine undrained and nine drained spruce swamp forests in southern Finland, complemented by sites in the Šumava Mountains, Czech Republic. Drainage had taken place decades prior; the rewetted sites varied in their rewetting age from 1 to 15 years. The results show that rewetting has to raise the water table above a threshold to initiate any changes in the drained ecosystem. If the threshold is crossed, the changes that occur will be rapid. Two strands of development emerged throughout the different components of the ecosystem: development towards the undrained reference state and development towards a new direction, different from both the undrained and the drained state. Rewetting created favourable conditions for Sphagnum photosynthesis. Sphagnum mosses recovered in cover and biomass production rapidly. The new growth started the accumulation of the porous surface organic matter layer characteristic of mires, which increased microbial decomposition activity in the surface organic layer towards undrained levels. Meanwhile, rewetting applied on the compacted, physicochemically altered peat created wet, unstable hydrological conditions, which increased the cover of opportunistic plant species in the understory and caused high NH4 mobilization and CH4 production in the surface organic layer. Demanding spruce swamp forest species were lacking at the rewetted sites, but rewetting was successful in restoring the common species and directing the ecosystem towards mire-like functioning.Keywords: peatland forest, vegetation, Sphagnum, moss photosynthesis, biomass production, biogeochemistry 4
ACKNOWLEDGEMENTSThis thesis is a result of the efforts of the many people who gave their time and expertise to the research project. Thank you for accompanying me on this venture. First, I want to express my gratitude to my supervisor Eeva-Stiina Tuittila. Thank you for your insightful thinking and persistent support. To my co-authors, thank you for your contribution. It has been a privilege to work with so many intelligent, creative and generous people. Your knowledge, skills and enthusiasm, be it in peatland restoration, plant ecophysiology, statistics or soil biogeochemistry, ...