The influences of different N fertilization rates and soil salinity levels on the growth and nitrogen uptake of cotton was evaluated with a pot experiment under greenhouse conditions. Results showed that cotton growth measured as plant height was significantly affected by the soil salinity and Nsalinity interaction, but not by N alone. Cotton was more sensitive to salinity during the emergence and early growth stages than the later developmental stages. At low to moderate soil salinity, the growth inhibition could be alleviated by fertilizer application. Soil salinity was a dominated factor affecting cotton's above-ground dry mass and root development. Dry mass of seed was reduced by 22%, 52%, and 84% respectively, when the soil salinity level increased from control level of 2.4 dS m −1 to 7.7 dS m −1 , 12.5 dS m −1 and to 17.1 dS m −1 , respectively. N uptake increased with N fertilization at adequate rates at both low and medium soil salinities but was not influenced by over N fertilization. At higher salinities, N uptake was independent of N rates and mainly influenced by soil salinity. The uptake of K decreased with soil salinity. The concentration of Na, Cl and Ca in plant tissues increased with soil salinity with highest concentrations in the cotton leaf.