“…46,47 Our group first identified the physiological relevance of S-nitrosylation by showing that NO and related RNS exert paradoxical effects via redox-based mechanisms -NO is neuroprotective via S-nitrosylation of NMDA receptors (as well as other subsequently discovered targets, including caspases), and yet can also be neurodestructive by formation of peroxynitrite (or, as later discovered, reaction with additional molecules such as parkin, PDI, GAPDH, and MMP-9) (Figure 1). 6,8,9,12,14,16,17,[19][20][21][22]48 Over the past decade, accumulating evidence has suggested that S-nitrosylation can regulate the biological activity of a great variety of proteins, in some ways akin to phosphorylation. 10,[49][50][51][52][53][54] Chemically, NO is often a good 'leaving group,' facilitating further oxidation of critical thiol to disulfide bonds among neighboring (vicinal) cysteine residues or, via reaction with ROS, to sulfenic (ÀSOH), sulfinic (ÀSO 2 H), or sulfonic (ÀSO 3 H) acid derivatization of the protein.…”