S-nitrosylation, the selective posttranslational modification of protein cysteine residues to form S-nitrosocysteine, is one of the molecular mechanisms by which nitric oxide influences diverse biological functions. In this study, unique MS-based proteomic approaches precisely pinpointed the site of S-nitrosylation in 328 peptides in 192 proteins endogenously modified in WT mouse liver. Structural analyses revealed that S-nitrosylated cysteine residues were equally distributed in hydrophobic and hydrophilic areas of proteins with an average predicted pK a of 10.01 ± 2.1. S-nitrosylation sites were over-represented in α-helices and under-represented in coils as compared with unmodified cysteine residues in the same proteins (χ 2 test, P < 0.02). A quantile-quantile probability plot indicated that the distribution of S-nitrosocysteine residues was skewed toward larger surface accessible areas compared with the unmodified cysteine residues in the same proteins. Seventy percent of the S-nitrosylated cysteine residues were surrounded by negatively or positively charged amino acids within a 6-Å distance. The location of cysteine residues in α-helices and coils in highly accessible surfaces bordered by charged amino acids implies site directed S-nitrosylation mediated by protein-protein or small molecule interactions. Moreover, 13 modified cysteine residues were coordinated with metals and 15 metalloproteins were endogenously modified supporting metalcatalyzed S-nitrosylation mechanisms. Collectively, the endogenous Snitrosoproteome in the liver has structural features that accommodate multiple mechanisms for selective site-directed S-nitrosylation.cysteine modification | nitric oxide | S-nitrosation | posttranslational modification | proteomics C ysteine S-nitrosylation is a reversible and apparently selective posttranslational protein modification that regulates protein activity, localization, and stability within a variety of organs and cellular systems (1-6). Despite the considerable biological importance of this posttranslational modification, significant gaps exist regarding its in vivo specificity and origin. The identification of in vivo S-nitrosylated proteins has indicated that not all reduced cysteine residues and not all proteins with reduced cysteine residues are modified, implying a biased selection. Several biological chemistries have been proposed to account for the S-nitrosylation of proteins in vivo (1,7,8). Broadly, these include (i) oxidative S-nitrosation by higher oxides of NO, (ii) transnitrosylation by small molecular weight NO carriers such as S-nitrosoglutathione or dinitrosyliron complexes, (iii) catalysis by metalloproteins, and (iv) protein-assisted transnitrosation, as elegantly documented for the S-nitrosylation of caspase-3 by S-nitrosothioredoxin (9, 10). With the exception of the protein-assisted transnitrosylation and metalloprotein catalyzed S-nitrosylation, which we presume necessitates protein-protein interaction, the other proposed mechanisms are rather nondiscriminatory unless th...