Phytosphingosine is abundant in plants and fungi and is found in mammalian epidermis, including the stratum corneum. Phytosphingosine and its derivatives N-acetyl phytosphingosine and tetraacetyl phytosphingosine are part of the natural defense system of the body. However, these molecules exhibit strong toxicities at high concentrations. We synthesized phytosphingosine derivatives, mYG-II-6 ((Z)-4-oxo-4-(((2S,3S,4R)-1,3,4-trihydroxyoctadecan-2-yl)amino)but-2-enoic acid) and fYG-II-6 ((E)-4-oxo-4-(((2S,3S,4R)-1,3,4-trihydroxyoctadecan-2-yl)amino)but-2-enoic acid), to increase efficacy and decrease toxicity, and the biological activities of the derivatives in the inflammatory response were examined. Both YG-II-6 compounds effectively suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammatory skin damage and inflammatory response in a mouse model. In addition, topical application of fYG-II-6 suppressed ear swelling and psoriasiform dermatitis in the ears of IL-23-injected mice. Anti-inflammatory and antipsoriatic activities of the phytosphingosine derivatives inhibited NF-κB, JAK/signal transducer and activator of transcription (JAK/STAT), and mitogen-activated protein kinase (MAPK) signaling. Finally, the YG-II-6 compounds induced programmed cell death in keratinocytes and mouse skin and were less toxic than phytosphingosine. Our study demonstrated that the phytosphingosine-derived YG-II-6 compounds have much stronger biological potencies than the lead compounds. The YG-II-6 compounds ameliorated inflammatory skin damage. Thus, YG-II-6 compounds are potential topical agents for treating chronic inflammatory skin diseases, such as psoriasis.