Abstract:In this research the dissolved inorganic nitrogen (DIN) loadings from direct precipitation, stream flow and groundwater discharge to two small estuaries located in Prince Edward Island (PEI), Canada, were quantified over a 2-year period. The two estuaries, like many around the world, exhibit deteriorating conditions that are believed to be related to excessive nitrogen transport from adjacent catchments. The significance of the groundwater transport pathway and the temporal variability of the loadings have not been previously investigated. The wet fraction of the atmospheric loading was quantified using available precipitation and DIN concentration records. Stream water entering the estuaries and the discharge from numerous shoreline springs, the predominate form of groundwater discharge, were monitored periodically during the study. The annual DIN loads delivered to both estuaries were dominated by streams, although groundwater discharge provided significant contributions of approximately 15-18%. Temporal variability of DIN loading was large, with monthly loads varying by a factor of 5; this variability was found to be primarily related to the variability of freshwater discharge. Concentrations of nitrate in stream water discharging to the estuaries and shoreline groundwater springs were similar in each catchment, suggesting that there was minimal differential attenuation during transport via these two pathways. The McIntyre Creek estuary had one of the highest normalized loads reported in the literature (1700 kg NO 3 -N/ha estuary/year), more than four-fold that of the Trout River estuary, and this result appears to be related to the larger percentage of land area used for potato production in the catchment. This study demonstrates that direct groundwater discharge to estuaries in PEI should not be ignored and that seasonal variations in loading may be important for managing DIN delivery to such estuaries.