Mechanosensation is a fundamental function through which cells sense mechanical stimuli by initiating intracellular ion currents. Ion channels play a pivotal role in this process by orchestrating a cascade of events leading to the activation of downstream signaling pathways in response to particular stimuli. Piezo1 is a cation channel that reacts with Ca2+ influx in response to pressure sensation evoked by tension on the cell lipid membrane, originating from cell–cell, cell–matrix, or hydrostatic pressure forces, such as laminar flow and shear stress. The application of such forces takes place in normal physiological processes of the cell, but also in the context of different diseases, where microenvironment stiffness or excessive/irregular hydrostatic pressure dysregulates the normal expression and/or activation of Piezo1. Since Piezo1 is expressed in several blood cell lineages and mutations of the channel have been associated with blood cell disorders, studies have focused on its role in the development and function of blood cells. Here, we review the function of Piezo1 in different blood cell lineages and related diseases, with a focus on megakaryocytes and platelets.