Powered by the mutual developments in instrumentation, materials and theoretical descriptions, sensing and imaging capabilities of quantum emitters in solids have significantly increased in the past two decades. Quantum emitters in solids, whose properties resemble those of atoms and ions, provide alternative ways to probing natural and artificial nanoscopic systems with minimum disturbance and ultimate spatial resolution. Among those emerging quantum emitters, the nitrogenvacancy (NV) color center in diamond is an outstanding example due to its intrinsic properties at room temperature (highly-luminescent, photo-stable, biocompatible, highly-coherent spin states). This review article summarizes recent advances and achievements in using NV centers within nano-and single crystal diamonds in sensing and imaging. We also highlight prevalent challenges and material aspects for different types of diamond and outline the main parameters to consider when using color centers as sensors. As a novel sensing resource, we highlight the properties of NV centers as light emitting electrical dipoles and their coupling to other nanoscale dipoles e.g. graphene. ‡ Present address: Istituto Nazionale di Ricerca Metrologica, Strada delle cacce 91, 10137 Torino (To), Italy arXiv:1909.03719v1 [physics.app-ph] 9 Sep 2019 Nanoscale sensing based on nitrogen vacancy centers 2