A multinuclear magnetic resonance ((1)H, (7)Li, (13)C, (15)N, (31)P) and DFT computational study at the M06-2X(SMD,THF)/6-311+G(d,p)//B3LYP/6-31G(d) level of the structure of a N-lithiated phosphinimidic amide (R)-Ph2P(=NCO2Me)NHCH(Me)Ph 13 has been performed. In THF solution it exists as an equilibrium mixture of monomers and dimers. The monomers consist of a six-membered ring formed by coordination of the lithium atom with the deprotonated nitrogen and the oxygen atom of the carbonyl group. This coordination mode is in contrast to the standard N,N-chelation observed in N-lithiated N,N'-bis(trimethylsilyl)phosphinimidic amides. The calculations showed that the metallacycle adopts a twist-boat conformation and that the lithium atom is in a tetrahedral environment involving O,N-chelation by the ligand and coordination to two/one THF molecules in the monomer/dimer. Dimerization takes place through O-Li bridges. For all species two series of isomers have been identified, which originated by restricted rotation of the methoxy group and ring inversion. The twist-boat conformational interconversion seems to be operating for explaining the pattern of signals observed in the (7)Li and (31)P NMR spectra. The structure found for the most stable dimer is analogous to the molecular structure reported for a related C(α)-lithiated phosphazene 20. The structural study revealed that the chiral side-arm of the N-lithiated species is oriented to the outer face of the pro-S P-phenyl ring, which shows one ortho-proton very close to the nitrogen atom of the carbamate moiety. In this conformation, proton abstraction by a base is highly favoured, in agreement with the experimental results.